On graphs whose second largest eigenvalue equals 1 – the star complement technique
نویسندگان
چکیده
منابع مشابه
Graphs with prescribed star complement for 1 as the second largest eigenvalue
Let G be a graph of order n and let μ be an eigenvalue of multiplicity m. A star complement for μ in G is an induced subgraph of G of order n −m with no eigenvalue μ. In this paper, we study maximal and regular graphs which have Kr,s + tK1 as a star complement for 1 as the second largest eigenvalue. It turns out that some well known strongly regular graphs are uniquely determined by such a star...
متن کاملEla a Note on Graphs Whose Largest Eigenvalue of the Modularity Matrix Equals Zero
Informally, a community within a graph is a subgraph whose vertices are more connected to one another than to the vertices outside the community. One of the most popular community detection methods is the Newman’s spectral modularity maximization algorithm, which divides a graph into two communities based on the signs of the principal eigenvector of its modularity matrix in the case that the mo...
متن کاملOn unicyclic graphs whose second largest eigenvalue dose not exceed 1
Connected graphs in which the number of edges equals the number of vertices are called unicyclic graphs. In this paper, all unicyclic graphs whose second largest eigenvalue does not exceed 1 have been determined. ? 2003 Elsevier B.V. All rights reserved.
متن کاملGraphs with prescribed star complement for the eigenvalue 1
Let G be a graph of order n and let μ be an eigenvalue of multiplicity m. A star complement for μ in G is an induced subgraph of G of order n−m with no eigenvalue μ. In this paper, we study the maximal graphs as well as regular graphs which have Kr,s + tK1 as a star complement for eigenvalue 1. It turns out that some well known strongly regular graphs are uniquely determined by such a star comp...
متن کاملGraphs with small second largest Laplacian eigenvalue
Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2007
ISSN: 0024-3795
DOI: 10.1016/j.laa.2006.08.025